

Retrofitting towards climate neutrality

D5.2 Technical Requirement & Development Guide

Program: HORIZON EUROPE

Grant agreement number: 101096522

Project acronym: Green Marine

Project title: Retrofitting towards climate neutrality

Prepared by: PDM

Date: 29/02/2024

Report version: v1.0

Page 2 of 32
D5.2 Technical Requirement & Development Guide Green Marine

Funding acknowledgement

Funded by the European Union; funding from the European Union’s Horizon Europe
research and innovation program under grant agreement No. 101096522

UK participation in Green Marine project is co-funded by Innovate UK funding scheme

Disclaimer: The views expressed in this deliverable are those of the authors and are disclosed in a non-reliance basis and for
information purposes only. The authors, the Green Marine consortium and partner employees and directors do not express or
implied representation and/or warranty as to the accuracy and completion of the information set out in this report (including
in any opinion, estimate, forecast and/or projection disclosed herein) and shall have no liability to the readers for any reliance
placed on this report. The readers will rely solely upon their own independent investigation and evaluation of the information
provided herein. Finally, this deliverable is based in information, legislation and data available as at the date of its creation
and the authors shall have no responsibility for updating the information contained in this report and for correcting any
inaccuracies in it, which may become apparent. The content of this deliverable does not reflect the official opinion of the
European Union.

Page 3 of 32
D5.2 Technical Requirement & Development Guide Green Marine

HISTORY OF CHANGES
Version Publication Date Changes
0.1 [20/11/2023] First draft
1.0 [30/01/2024] Discussion with CMMI
1.0 [30/01/2024] Feedback from all partners
1.0 [09/02/2024] Discussion with CMMI
1.0 [15/02/2024] Discussion with CMMI
2.0 [23/02/2024] Feedback from reviewers
2.0 [29/02/2024] Submission to EC portal

Page 4 of 32
D5.2 Technical Requirement & Development Guide Green Marine

DETAILS
Grant Agreement No. 101096522
Project acronym Green Marine
Project full title Retrofitting towards climate neutrality
Dissemination level Public
Due date of deliverable M13
Actual submission date M13
Deliverable name D5.2 Technical Requirement & Development Guide
Type Report
Status Initial version
WP contributing to the
deliverable

WP5

Author(s) Nuno Pedrosa & Carlos Marques (PDM)
Other Contributor(s) Ashok Kumar (CMMI) George Mallouppas (CMMI)

Giovanni Mazzuto (UPM) Torbjørn Pettersen (SINTEF)
Reviewer(s) Giovanni Mazzuto (UPM), Torbjørn Pettersen (SINTEF),

Filippo Emanuele Ciarapica (UPM)
Keywords Green Marine, Development, Specifications, Design

Parameters, Functional Requirements, Coding Standards,
System Architecture, Performance, Integration, Testing,
Documentation, Prototyping,Version Control, Maintenance,
Technical Constraints, Security, Agile, User Interface,
Database, Backup

Page 5 of 32
D5.2 Technical Requirement & Development Guide Green Marine

1 Executive Summary ... 8

2 Introduction .. 9

2.1 Purpose of the Guide .. 9
2.2 Scope and Objectives ... 10

3 Technical Requirements .. 10

3.1 System Architecture ... 10
3.2 Hardware Requirements ... 11
3.3 Software Requirements .. 11

4 Development Process ... 12

4.1 Methodology .. 12
4.1.1 Core Values ... 13
4.1.2 Key Principles ... 13
4.1.3 Common Agile Frameworks ... 13
4.1.4 Roles and Ceremonies ... 13
4.1.5 Benefits of Agile ... 13
4.1.6 Implementing Agile .. 13

4.2 Coding Standards ... 14
4.2.1 PSR-1 Basic Coding Standard .. 14

4.2.1.1 Overview ... 14
4.2.1.2 Files ... 15

PHP Tags .. 15
Character Encoding .. 15
Side Effects .. 15

4.2.1.3 Namespace and Class Names .. 16

4.2.1.4 Class Constants, Properties, and Methods .. 16
Constants .. 16
Properties .. 16

Methods .. 16
4.2.2 PSR-4 Autoloader ... 17

4.2.2.1 Specification .. 17
4.2.2.2 Examples ... 17

4.3 Testing Procedures ... 17
4.3.1 Unit Testing .. 18
4.3.2 Feature Testing .. 18
4.3.3 Best Practices .. 18

4.4 Deployment Process ... 18
4.4.1 Preparation for Deployment .. 18
4.4.2 Deployment Process .. 19
4.4.3 Server Configuration ... 19
4.4.4 Post-Deployment Checks .. 19

Page 6 of 32
D5.2 Technical Requirement & Development Guide Green Marine

4.4.5 Rollback Plan .. 19

5 User Interface Design .. 20

5.1 User Experience (UX) Guidelines ... 20
5.1.1 Understand Your Users ... 20
5.1.2 Design with Consistency ... 20
5.1.3 Simplicity .. 20
5.1.4 Feedback and Response Time ... 20
5.1.5 Easy Navigation .. 20
5.1.6 Error Prevention and Handling ... 20
5.1.7 Usability Testing ... 21
5.1.8 Visual Hierarchy and Readability ... 21

5.2 Visual Design Principles .. 21
5.3 Accessibility Requirements ... 21

6 Data Management .. 22

6.1 Database Design ... 22
6.1.1 Understanding Laravel with PostgreSQL ... 22
6.1.2 Design Principles .. 22
6.1.3 Best Practices .. 22

6.2 Data Security Measures ... 23
6.2.1 Authentication and Authorization ... 23
6.2.2 Encryption ... 23
6.2.3 Network Security .. 23
6.2.4 Auditing and Monitoring .. 23

6.3 Data Backup and Recovery .. 23
6.3.1 Backup Techniques ... 24
6.3.2 Point-in-Time Recovery (PITR) ... 24
6.3.3 Best Practices for Backup and Recovery .. 24

7 Integration and APIs ... 24

8 Performance Optimization .. 25

8.1 Load Testing .. 25
8.2 Code Optimization ... 26
8.3 Scalability Considerations ... 26

9 Security Measures .. 27

9.1 Authentication and Authorization .. 27
9.2 Encryption Standards ... 28
9.3 Security Audits and Monitoring ... 29

10 Documentation Guidelines .. 30

10.1 Code Documentation ... 30
10.1.1 Commenting Code .. 30
10.1.2 Documenting Methods and Functions .. 30
10.1.3 Class Documentation .. 30

Page 7 of 32
D5.2 Technical Requirement & Development Guide Green Marine

10.1.4 Versioning and Deprecation Notices .. 30
10.1.5 Readability and Consistency ... 31
10.1.6 External Documentation ... 31
10.1.7 Tools and Integrations ... 31

10.2 User Manuals ... 31
10.2.1 Understanding the Audience ... 31
10.2.2 Structure and Content ... 31
10.2.3 Visual Aids.. 32

10.3 Release Notes ... 32
10.3.1 Importance of Release Notes .. 32
10.3.2 Key Components ... 32

11 Conclusions ... 32

Page 8 of 32
D5.2 Technical Requirement & Development Guide Green Marine

1 EXECUTIVE SUMMARY
This document is deliverable “D5.2 Technical Requirement & Development Guide” of the
European Union project “Retrofitting towards climate neutrality” (herein referred to as “Green
Marine”), with grant agreement No. 101096522.

The deliverable presents a comprehensive guide on the technical requirements and
development strategies for deploying robust, scalable, and secure the web applications that
support the software tools and simulators. It outlines the essential software components,
hardware requirements, and best, required, practices in the database design, application
development, and deployment strategies, with a focus on leveraging modern technologies such
as Laravel, PostgreSQL, Docker, and Nginx.
Key Components and Technologies:

• Database Management: Implementation of PostgreSQL as the primary database
system, offering advanced features, reliability, and compatibility with complex data
structures.

• Application Development: Utilization of Laravel, a PHP framework known for its
elegant syntax and rich ecosystem, facilitating rapid development and maintainability.

A significant focus is placed on performance optimization techniques, including load testing
and code optimization strategies to ensure applications can handle expected user loads
efficiently.
Security is addressed through encryption standards in Laravel, data security measures with
PostgreSQL, and general best practices for securing web applications. Regular security audits
and monitoring are recommended to identify and mitigate potential vulnerabilities.
The importance of thorough documentation is stressed, covering code documentation, user
manuals, and release notes to aid developers and end-users.

Page 9 of 32
D5.2 Technical Requirement & Development Guide Green Marine

2 INTRODUCTION
The main objective of Green Marine is to significantly accelerate climate neutrality of
waterborne transport through retrofitting existing fleets with cost and emission control
solutions. To support decision makers retrofitting protocols and a software tool catalogue that
gathers knowledge will be developed and validated. We will demonstrate these tools and the
innovative solutions aimed at carbon capture mineralization, which also aids in deacidifying
our seas; energy savings for HVAC systems through air-reuse; carbon and water as a side
product capture with membranes, and the use of excess engine heat to produce a syngas to save
on fuel consumption. An ultra-sound technology will be tailored to suit vessels allowing air-
reuse saving energy for HVAC systems and operated as pre-treatment enhancing a membrane
carbon capture process. The Ca/Mg – alkali solvent capture process is capable of removing
75% of the CO2 from flue gases. All solutions will be theoretically evaluated before
demonstration on a land-based engine followed by the selection of the most suitable solution
for a demonstration on a waterborne vessel. The (land-based) demonstrations will be
representative for the operation of a majority of vessel engines in use currently. By developing
retrofitting protocols, simulations of the solutions, data generated at the demonstrations a
software catalogue tool will be developed. Through engagement activities this tool will gain
more users and more knowledge, its value and effectiveness will increase for all users. The
project aims to bring the different solutions to TRL 8. The demonstrations, the software tool
catalogue, and the dissemination and exploitation activities ensure that project results will be
replicated globally. The consortium consists of 10 partners from 7 countries with 4 research
institutes, 1 shipping company, which will host a demo as end user and 5 SMEs.

The objectives of WP5 – Software tool catalogue for GHG-emission reduction solutions are to
integrate data and modelling sources and tools into the software tool catalogue to develop and
implement a modelling software tool suitable for all stakeholders: 1) allowing for federated
learning; 2) create value chains; 3) to support a bottom-up characterization and simulate the
cost-benefits of alternative options for GHG-emission avoidance, for a wide range of ship
types/classes 4) to be a decision support tool for industry and communities.

• Develop open APIs, security, privacy features, cloud etc. and app tools for the
catalogue tool and validate them.

• To collaborate with the ship owners in developing their tool so as learnings can be
exchanged.

2.1 PURPOSE OF THE GUIDE

Task 5.2 deals with the engineering design solutions for GHG emission reduction solutions.
There are two sub tasks as mentioned below.

Subtask 5.2.1 Air circulation - Utilizing existing CFD HVAC modelling tools to aid in
determining what happens to air circulation. Engineer positive pressurised cabins, with exhaust
air being disinfecting before leaving the cabins. While not all cabins (staff and guests) could
be arranged this way, a number of cabins capable of producing such a positive pressure are
considered. Optimization in recirculation of air is needed using special sensors, in order to limit
energy consumption, the ship’s emissions. The air should be sterilized with SepaRaptor and
UV (or other solutions like electrostatic, chemicals etc.). Also, investigated is its
implementation with air recirculation and fresh air or oxygen addition through membrane
separation. This solution calls for a marinized system, that needs to be positioned inside the

Page 10 of 32
D5.2 Technical Requirement & Development Guide Green Marine

existing vessel seamlessly, therefore a study of air quality, energy and air flows must be
simulated before implementing it on the vessel.

Subtask 5.2.2 Engines and their flue gas streams - Similar to above, and less intensive as it
is straight forward (engine to stack).

2.2 SCOPE AND OBJECTIVES
This document is intended to serve as a comprehensive resource for the development team,
project managers, and stakeholders involved in the planning, development, and deployment
phases of the software project. This document outlines the technical specifications, system
architecture, development methodologies and coding standards in use in the project.
The primary objectives are to:

1. Ensure Clarity and Consistency: Provide a clear and consistent framework for the
development team to follow, reducing ambiguity and ensuring that all team members
have a common understanding of the project's technical requirements and objectives.

2. Facilitate Effective Planning: Aid in the planning and estimation process, enabling
efficient allocation of resources and timelines.

3. Promote Quality and Performance: Establish standards and practices that promote
the development of high-quality, high-performance software that meets the needs of
the users and stakeholders.

4. Support Scalability and Flexibility: Outline a system architecture and development
approach that supports scalability and flexibility, allowing for future enhancements
and integration with other systems.

5. Enhance Collaboration and Communication: Serve as a reference point for the
development team, project managers, and stakeholders, enhancing collaboration and
communication throughout the project lifecycle.

6. Mitigate Risks: Identify potential technical challenges and risks early in the project,
allowing for the implementation of mitigation strategies to avoid delays and cost
overruns.

3 TECHNICAL REQUIREMENTS

3.1 SYSTEM ARCHITECTURE
The base platform encompasses several complementary and stand-alone analysis modules that
can be invoked and run in different combinations. The users may access their own dedicated
area within the platform to run, store and share simulations and results.
The platform is structured in layers, having a common knowledge base (KB) that provides base
data to all modules, through a core functionalities module that provides base services.

Page 11 of 32
D5.2 Technical Requirement & Development Guide Green Marine

All the technical details of the equipment, the engine characteristics, fuels characteristics and
fluids properties are retrieved from the KB, so that all common information is contained in a
single source.

3.2 HARDWARE REQUIREMENTS
The COCO (CAPE-OPEN to CAPE-OPEN) simulator requires WindowsXP or later and a
suitable server.
The simulations being developed by UPM, require:

• Intel Core i9-11900KF or better
• 16+GB DDR4 RAM
• 1TB SSD
• Nvidia Quadro Graphics Card

For server deployment, the following specifications are required:
• Quad core CPU or better
• 8GB RAM
• 200GB storage
• Broadband connection

3.3 SOFTWARE REQUIREMENTS
The core functionalities module requires Python 3.8.0+. The packages needed to run the CF
module are listed below:

-numpy=1.20.3
-pandas=1.3.4
-geopy=2.20
-pvlib-python=0.9.0
-urllib3=1.26.7
-beautifulsoup4=4.10.0
-matplotlib=3.4.3
-requests=2.26
-mpld3
-pydantic

The User Interface uses Laravel, requiring at least PHP 8.1.
Simulation modules will use Python 3.8.0+.
Up until now, the simulation models developed by UPM have been designed to require
manageable computational resources in line with current processing capabilities. The

KB - Knowledge Base

CF – Core Functionalities

Simulation 1

 Simulation 2

 Simulation 3

Simulation n

Figure 1- High level architecture

Page 12 of 32
D5.2 Technical Requirement & Development Guide Green Marine

programming language Python has been adopted by UPM. This choice was motivated by the
flexibility and power of Python in handling complex simulation algorithms.
With the evolution of technologies and the implementation of new solutions, more advanced
machine learning and artificial intelligence algorithms may be necessary for future models. The
integration of these technologies may require additional computational resources, as more
complex algorithms and larger datasets could be involved.
For web deployment, the choice is Nginx server due to its high performance, stability, rich
feature set, and low resource consumption. Nginx is an open-source web server that also serves
as a reverse proxy, load balancer, and HTTP cache. It is known for its high scalability and
ability to handle a large number of simultaneous connections with a minimal memory footprint,
making it an ideal choice for serving static content, directing dynamic requests to application
servers, and improving the overall efficiency and reliability of web applications.
Deployment is done through Docker. Docker is an open-source platform that simplifies the
process of building, shipping, and running applications using containerization technology. By
encapsulating applications and their dependencies into containers, Docker enables seamless
deployment across different environments, reducing the "it works on my machine" problem
and streamlining the development lifecycle.
PostgreSQL 16 is the database of choice. It is a powerful, open-source object-relational
database system known for its strong reputation for system integrity, robust feature set, and
support for advanced data types and functionality. Its versatility makes it suitable for a wide
range of applications, from simple web applications to sophisticated data warehousing
solutions with massive volumes of data.
For the membrane simulations, by SINTEF, the in-house models are implemented in the
programming language Python as stand-alone functions which can be run on their own to
simulate the performance of a single stage membrane module.
These Python models can be used in any cape open compliant process simulators using the
commercially available Python Unit Operation model provided by AmsterCHEM1. This will
allow for membrane modules to be included as unit operations in a steady state flowsheet
simulation.
Within the Green Marine project SINTEF has implemented process flowsheet models of
various membrane-based CO2 capture configurations in the cape-open compliant simulation
environment COCO/COFE2 which is free for download and free for use.

4 DEVELOPMENT PROCESS
Development in Green Marine starts from several different points, as each partner is focused
on maturing their technology and simulation models start their life as replicas of their
practical technology development.
In this context, the software development will follow the Agile methodology.

4.1 METHODOLOGY
The Agile methodology is a project management and product development approach that is
iterative, incremental, and focuses on collaboration, customer feedback, and small, rapid
releases. It is built on the foundation of flexible planning, early delivery, and continuous
improvement, all with an eye toward being able to respond to change quickly and efficiently.

1 https://www.amsterchem.com/pythonunitoperation.html
2 https://www.cocosimulator.org/

https://www.amsterchem.com/pythonunitoperation.html
https://www.cocosimulator.org/

Page 13 of 32
D5.2 Technical Requirement & Development Guide Green Marine

Agile methodologies are particularly popular in software development but can be applied to
various types of projects. Here are some key aspects of using Agile methodology:

4.1.1 Core Values
Agile methodology is defined by four core values as outlined in the Agile Manifesto:

1. Individuals and interactions over processes and tools.
2. Working software over comprehensive documentation.
3. Customer collaboration over contract negotiation.
4. Responding to change over following a plan.

4.1.2 Key Principles
Beyond the core values, Agile methodology is guided by 12 principles which include
customer satisfaction through early and continuous delivery, welcoming changing
requirements, frequent delivery of working software, close daily cooperation between
business people and developers, building projects around motivated individuals, face-to-face
conversation as the best form of communication, and maintaining a constant pace
indefinitely.

4.1.3 Common Agile Frameworks
Several frameworks exist under the Agile umbrella, including:

• Scrum: Uses fixed-length iterations called sprints, with a focus on delivering a
potentially shippable product increment at the end of each sprint.

• Kanban: Focuses on visualizing the workflow and limiting work in progress to
improve flow and reduce cycle time.

• Extreme Programming (XP): Emphasizes technical practices like test-driven
development, continuous integration, and refactoring to improve software quality and
responsiveness to changing customer requirements.

4.1.4 Roles and Ceremonies
In Scrum, which is one of the most widely used Agile frameworks, roles include the Product
Owner, Scrum Master, and Development Team. Regular ceremonies such as Sprint Planning,
Daily Stand-ups, Sprint Reviews, and Sprint Retrospectives facilitate communication,
planning, teamwork, and reflection.

4.1.5 Benefits of Agile
• Flexibility: Agile allows for change and adapts to stakeholders' feedback throughout

the development process.
• Transparency: Regular check-ins and demos with stakeholders keep everyone

informed and ensure alignment with business goals.
• Risk Management: Frequent iterations expose issues early, reducing the risks

associated with development.
• Customer Satisfaction: By involving the customer in the development process, the

final product is more likely to meet their needs.
• Employee Satisfaction: Agile often leads to higher team morale and engagement due

to its emphasis on autonomy, mastery, and purpose.

4.1.6 Implementing Agile
When implementing Agile methodology, it's important to:

• Ensure that the entire team, including stakeholders, understands the Agile mindset and
principles.

• Start with a simple framework like Scrum or Kanban before adapting and customizing
the process to fit your organization's unique needs.

Page 14 of 32
D5.2 Technical Requirement & Development Guide Green Marine

• Use tools like digital boards and project management software to track progress and
facilitate communication.

• Embrace the iterative nature of Agile, and be prepared to learn and adapt as you go.

Agile is more than just a set of practices; it's a mindset that encourages teams to work
efficiently, deliver value quickly, and adapt to change smoothly. Adopting Agile requires
commitment to continuous improvement and a willingness to embrace change, both of which
are crucial in today's fast-paced business environment.

4.2 CODING STANDARDS
The main application uses the Laravel Framework3. Laravel is a PHP web application
framework with expressive, elegant syntax, that strives to follow the PSR-3 and PSR-1
coding standards, with the addition of the following conventions:

• a class namespace declaration must be on the same line as <?php.
• the class opening bracket “{“ must be in the same line as the class name.
• functions and control structures must use Allman style braces, meaning that the brace

associated with a control statement is placed on the next line, indented to the same
level as the control statement. Statements within the braces are indented to the next
level.

• indent with tabs, align with spaces.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 21194.

4.2.1 PSR-1 Basic Coding Standard
The PSR-1 basic coding standard comprises what should be considered the standard coding
elements required to ensure a high level of technical interoperability between shared PHP
code.

4.2.1.1 Overview
• Files MUST use only <?php and <?= tags.
• Files MUST use only UTF-8 without BOM for PHP code.
• Files SHOULD either declare symbols (classes, functions, constants, etc.) or cause

side-effects (e.g. generate output, change .ini settings, etc.) but SHOULD NOT do
both.

• Namespaces and classes MUST follow an "autoloading" PSR: [PSR-45].
• Class names MUST be declared in StudlyCaps.
• Class constants MUST be declared in all upper case with underscore separators.
• Method names MUST be declared in camelCase.

3 https://laravel.com
4 https://www.ietf.org/rfc/rfc2119.txt
5 https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md

http://www.ietf.org/rfc/rfc2119.txt
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md

Page 15 of 32
D5.2 Technical Requirement & Development Guide Green Marine

4.2.1.2 Files

PHP Tags
PHP code MUST use the long <?php ?> tags or the short-echo <?= ?> tags; it MUST
NOT use the other tag variations.

Character Encoding
PHP code MUST use only UTF-8 without BOM.

Side Effects
A file SHOULD declare new symbols (classes, functions, constants, etc.) and cause no other
side effects, or it SHOULD execute logic with side effects, but SHOULD NOT do both.
The phrase "side effects" means execution of logic not directly related to declaring classes,
functions, constants, etc., merely from including the file.
"Side effects" include but are not limited to: generating output, explicit use of require or
include, connecting to external services, modifying ini settings, emitting errors or
exceptions, modifying global or static variables, reading from or writing to a file, and so on.
The following is an example of a file with both declarations and side effects; i.e, an example
of what to avoid:

<?php
// side effect: change ini settings
ini_set('error_reporting', E_ALL);

// side effect: loads a file
include "file.php";

// side effect: generates output
echo "<html>\n";

// declaration
function foo()
{
 // function body
}

The following example is of a file that contains declarations without side effects; i.e., an
example of what to emulate:

<?php
// declaration
function foo()
{
 // function body
}

// conditional declaration is *not* a side effect
if (! function_exists('bar')) {
 function bar()
 {
 // function body
 }
}

Page 16 of 32
D5.2 Technical Requirement & Development Guide Green Marine

4.2.1.3 Namespace and Class Names
Namespaces and classes MUST follow an "autoloading" PSR: [PSR-4].
This means each class is in a file by itself and is in a namespace of at least one level: a top-
level vendor name.
Class names MUST be declared in StudlyCaps.
Code written for PHP 5.3 and after MUST use formal namespaces.
For example:

<?php
// PHP 5.3 and later:
namespace Vendor\Model;

class Foo
{
}

Code written for 5.2.x and before SHOULD use the pseudo-namespacing convention of
Vendor_ prefixes on class names.

<?php
// PHP 5.2.x and earlier:
class Vendor_Model_Foo
{
}

4.2.1.4 Class Constants, Properties, and Methods
The term "class" refers to all classes, interfaces, and traits.

Constants
Class constants MUST be declared in all upper case with underscore separators. For example:

<?php
namespace Vendor\Model;

class Foo
{
 const VERSION = '1.0';
 const DATE_APPROVED = '2012-06-01';
}

Properties
This guide intentionally avoids any recommendation regarding the use of $StudlyCaps,
$camelCase, or $under_score property names.
Whatever naming convention is used SHOULD be applied consistently within a reasonable
scope. That scope may be vendor-level, package-level, class-level, or method-level.

Methods
Method names MUST be declared in camelCase().

https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md

Page 17 of 32
D5.2 Technical Requirement & Development Guide Green Marine

4.2.2 PSR-4 Autoloader
This PSR describes a specification for autoloading classes from file paths. It is fully
interoperable, and can be used in addition to any other autoloading specification,
including PSR-0. This PSR also describes where to place files that will be autoloaded according
to the specification.

4.2.2.1 Specification
1. The term " " refers to classes, interfaces, traits, and other similar structures.
2. A fully qualified class name has the following form:

\<NamespaceName>(\<SubNamespaceNames>)*\<ClassName>
i. The fully qualified class name MUST have a top-level namespace name, also

known as a "vendor namespace".
ii. The fully qualified class name MAY have one or more sub-namespace names.

iii. The fully qualified class name MUST have a terminating class name.
iv. Underscores have no special meaning in any portion of the fully qualified

class name.
v. Alphabetic characters in the fully qualified class name MAY be any

combination of lower case and upper case.
vi. All class names MUST be referenced in a case-sensitive fashion.

3. When loading a file that corresponds to a fully qualified class name ...
i. A contiguous series of one or more leading namespace and sub-namespace

names, not including the leading namespace separator, in the fully qualified
class name (a "namespace prefix") corresponds to at least one "base
directory".

ii. The contiguous sub-namespace names after the "namespace prefix"
correspond to a subdirectory within a "base directory", in which the
namespace separators represent directory separators. The subdirectory name
MUST match the case of the sub-namespace names.

iii. The terminating class name corresponds to a file name ending in .php. The file
name MUST match the case of the terminating class name.

4. Autoloader implementations MUST NOT throw exceptions, MUST NOT raise errors
of any level, and SHOULD NOT return a value.

4.2.2.2 Examples
The table below shows the corresponding file path for a given fully qualified class name,
namespace prefix, and base directory.

Fully Qualified Class Name Namespace
Prefix

Base Directory Resulting File Path

\Acme\Log\Writer\File_Writer Acme\Log\Writer ./acme-log-writer/lib/ ./acme-log-writer/lib/File_Writer.php
\Aura\Web\Response\Status Aura\Web /path/to/aura-web/src/ /path/to/aura-

web/src/Response/Status.php
\Symfony\Core\Request Symfony\Core ./vendor/Symfony/Core/ ./vendor/Symfony/Core/Request.php
\Zend\Acl Zend /usr/includes/Zend/ /usr/includes/Zend/Acl.php

4.3 TESTING PROCEDURES
This section outlines the key testing procedures and best practices within the Laravel
framework, ensuring high-quality software development through comprehensive test
coverage.

https://php.net/manual/en/language.oop5.autoload.php
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md

Page 18 of 32
D5.2 Technical Requirement & Development Guide Green Marine

4.3.1 Unit Testing
Unit tests focus on testing small, isolated parts of the application, typically individual
methods or functions. Laravel is built with PHPUnit, a powerful and versatile testing
framework for PHP, making it straightforward to write and run unit tests.

• Writing Tests: Unit tests in Laravel are stored in the tests/Unit directory. To create a
new test case, use the Artisan command php artisan make:test TestName --unit.

• Test Methods: Each test method should be prefixed with test, such as
testUserCreation(). Laravel also supports the @test annotation in docblocks to
denote test methods.

• Assertions: Utilize PHPUnit's wide range of assertions to verify that the application
behaves as expected. Laravel enhances PHPUnit with additional assertions specific to
Laravel features, such as database and authentication assertions.

4.3.2 Feature Testing
Feature tests examine the application's response to HTTP requests, covering a broader scope
than unit tests. These tests interact with the application's routes, controllers, middleware, and
more, providing a way to test the application's overall behavior.

• Writing Tests: Feature tests are typically stored in the tests/Feature directory. Create
a feature test using the Artisan command php artisan make:test TestName.

• Making Requests: Using methods like get, post, put, delete, etc., to simulate HTTP
requests to your application. Then, assert the expected responses using assertions such
as assertStatus or assertSee.

• Database Testing: Laravel provides features like database transactions and the
database seeding to test database interactions without persisting data, ensuring tests do
not interfere with each other.

4.3.3 Best Practices
• Test-Driven Development (TDD): Whenever possible a TDD approach is used,

where tests are written before the actual code, ensuring every code change is tested.
• Coverage: Aim should be for high test coverage but prioritizing meaningful tests over

merely increasing the coverage metric.
• Refactoring: Using tests as a safety net for refactoring, ensuring that improvements

or optimizations do not break existing functionality.

Adhering to these testing procedures within Laravel not only ensures that your application
functions as intended but also facilitates a development process that is more efficient,
reliable, and maintainable. By incorporating unit, feature, and browser tests into your
development workflow, and leveraging continuous integration for automated testing, you can
significantly enhance the quality and robustness of your Laravel applications.

4.4 DEPLOYMENT PROCESS
This section outlines the key considerations, tools, and best practices for effectively
deploying Laravel applications. The same procedures are used when deploying simulation
modules or other server features.

4.4.1 Preparation for Deployment
• Environment Configuration: Ensure that the .env file, or equivalent, on the

production server is correctly configured for the application's environment, including
database connections, mail drivers, and any other external service configurations.

Page 19 of 32
D5.2 Technical Requirement & Development Guide Green Marine

• Dependency Management: Use Composer to manage PHP dependencies. Ensure all
dependencies are correctly installed on the production server by running composer
install --optimize-autoloader --no-dev to install without development dependencies.

• Asset Compilation: When using Laravel Mix for asset compilation, run npm run
production to compile and minify CSS and JavaScript assets.

4.4.2 Deployment Process
1. Version Control: Git is used to manage application's source code. Deployments can

be triggered by pushing to a specific branch, such as main.
2. Automated Deployment Tools: Several tools can automate the steps of the

deployment process, such as pulling the latest code, running migrations, and
optimizing the application.

3. Application Optimization: Laravel provides several commands to optimize the
application for production:

• php artisan config:cache to cache the configuration files,
• php artisan route:cache for routing optimization,
• php artisan view:cache to compile and cache Blade templates.

4. Database Migrations: Use php artisan migrate to apply database migrations on the
production server. Ensure this is done as part of the deployment process to keep the
database schema up to date.

4.4.3 Server Configuration
• Web Server: Configure the web server (Nginx or Apache) to point to the Laravel

application's public directory. Ensure that URL rewriting is correctly set up to route
requests through the index.php file.

• PHP Version: Ensure the server is running a supported PHP version for the version
of Laravel. If needed, check the Laravel documentation for the required PHP version.

• Security: Implement SSL/TLS to secure data transmission. Set appropriate file
permissions for your application files and directories to protect them from
unauthorized access.

4.4.4 Post-Deployment Checks
• Environment Testing: After deployment, thorough testing of the application in the

production environment should be done, to ensure all functionalities work as expected
and the environment is correctly configured. Focus on added features and basic usage
flow.

• Monitoring and Logging: Monitoring and logging tools track the application's
performance and detect errors or issues promptly. Laravel's built-in logging features
can be integrated with external monitoring services for comprehensive monitoring.

4.4.5 Rollback Plan
• Backup: Regular backups of the application's database and files allow for recovery if

strictly needed. Before deploying a new version, ensure recent backups are available
to restore if needed.

• Rollback Procedure: There must be a clear procedure for rolling back to a previous
version of the application in case of deployment failure or critical post-deployment
issues. This is a critical last resort. Extensive upgrades may require extensive
changes to the database, that may not be easy to roll back. If a critical upgrade is
planned, consider locking the application, to avoid external changes to the database
that may be lost upon roll back. Ex: REST APIs that update data should be

Page 20 of 32
D5.2 Technical Requirement & Development Guide Green Marine

unavailable during the upgrade, even if they are not related to the new features being
added.

Successful deployment of applications is a critical step in the development lifecycle, requiring
careful planning and execution. By following these guidelines and utilizing the appropriate
tools and practices, we can ensure that applications are deployed smoothly, securely, and
efficiently, minimizing downtime and providing a seamless experience for the end-users.

5 USER INTERFACE DESIGN

5.1 USER EXPERIENCE (UX) GUIDELINES
Creating a positive user experience (UX) is essential for the success of any application. UX
encompasses all aspects of the end-user's interaction with the company, its services, and its
products. The goal is to enhance customer satisfaction and loyalty by improving the usability,
ease of use, and pleasure provided in the interaction between the customer and the product.
Below are the key guidelines for designing our UX:

5.1.1 Understand Your Users
• Conduct user research to understand their behaviors, needs, motivations, and pain points.

• Create personas to represent the different user types that might use your service, product, or
site.

• Map user journeys to identify all possible interactions users can have with your product.

5.1.2 Design with Consistency
• Use consistent layouts and visual elements to improve learnability and reduce cognitive load.

• Employ a uniform language, tone, and terminology across the product.

5.1.3 Simplicity
• Keep the interface simple, with a clear hierarchy and minimal clutter to avoid overwhelming

the user.

• Focus on primary tasks and present only the necessary information that will guide users to
complete those tasks efficiently.

5.1.4 Feedback and Response Time
• Provide immediate feedback in response to user actions to keep them informed of results or

errors.

• Optimize response times; users should not have to wait excessively long for any action they
take.

5.1.5 Easy Navigation
• Design an intuitive navigation system that allows users to quickly find what they're looking

for.

• Use familiar navigation patterns and include search functionality to expedite the discovery
process.

5.1.6 Error Prevention and Handling
• Design the UI in such a way that potential errors are minimized.

Page 21 of 32
D5.2 Technical Requirement & Development Guide Green Marine

• Clearly communicate error messages with actionable solutions to help users resolve any
issues.

5.1.7 Usability Testing
• Test your design with real users to gather feedback and observe interaction patterns.

• Conduct usability testing at multiple stages of the design process to identify and fix issues
early on.

5.1.8 Visual Hierarchy and Readability
• Use size, color, contrast, and alignment to create a clear visual hierarchy that guides users

through your content.

• Ensure text readability with appropriate fonts, sizes, spacing, and paragraph formatting.

By adhering to these UX guidelines, we can create products that not only meet the users' needs but
also provide an enjoyable and effective interaction. But, a good UX design is an ongoing process of
learning and improvement, requiring continuous user feedback and iterative development, so it’s only
natural that changes to the UX may come at a later stage, after the users are able to have their hands
on the system.

5.2 VISUAL DESIGN PRINCIPLES

5.3 ACCESSIBILITY REQUIREMENTS
Design is for all people including those with disabilities. The Web Content Accessibility
Guidelines (WCAG) will be followed to ensure the platform is accessible.

As much as possible, the platform will provide alternative text for images, using sufficient
contrast for text and background colors, and ensuring navigation is possible via keyboard.

The Web Content Accessibility Guidelines (WCAG) are part of a series of web accessibility
guidelines published by the Web Accessibility Initiative (WAI) of the World Wide Web
Consortium (W3C), the main international standards organization for the Internet. They are
designed to make web content more accessible to people with a wide range of disabilities,
including visual, auditory, physical, speech, cognitive, language, learning, and neurological
disabilities.
WCAG has several versions, with WCAG 2.0 and WCAG 2.1 being the most commonly
referenced. The guidelines are organized around the following four principles, which lay the
foundation necessary for anyone to access and use web content:
Perceivable: Information and user interface components must be presented to users in ways
they can perceive. This means that users must be able to perceive the information being
presented (it can't be invisible to all of their senses).
Operable: User interface components and navigation must be operable. This means that
users must be able to operate the interface (the interface cannot require interaction that a user
cannot perform).
Understandable: Information and the operation of the user interface must be understandable.
This means that users must be able to understand the information as well as the operation of
the user interface (the content or operation cannot be beyond their understanding).
Robust: Content must be robust enough that it can be interpreted reliably by a wide variety of
user agents, including assistive technologies. This means that users must be able to access the

Page 22 of 32
D5.2 Technical Requirement & Development Guide Green Marine

content as technologies advance (as technologies and user agents evolve, the content should
remain accessible).
Each principle is addressed through guidelines, and for each guideline, there are testable
success criteria, which are at three levels: A (lowest), AA, and AAA (highest). WCAG 2.0
and 2.1 have 12-13 guidelines organized under these principles, with a total of 78 success
criteria across all levels.

6 DATA MANAGEMENT

6.1 DATABASE DESIGN
This section outlines key considerations and best practices for designing a database using
Laravel and PostgreSQL, explaining the global application database approach.

6.1.1 Understanding Laravel with PostgreSQL
Laravel's Eloquent ORM and PostgreSQL: Laravel's Eloquent ORM provides an elegant,
ActiveRecord implementation for working with databases. When paired with PostgreSQL, it
leverages PostgreSQL's advanced features, such as full-text search, JSON support, and
concurrency control, while maintaining ease of development and code readability.
Migration and Schema Builder: Laravel's migrations offer version control for your database
schema, allowing the definition and sharing of the database's layout across development teams.
The Schema Builder is an intuitive way to define database tables and columns in PHP code,
ensuring your database schema is also part of your application's version-controlled codebase.

6.1.2 Design Principles
Normalization and PostgreSQL's Advanced Types: A normalized database design reduces
redundancy and ensures data integrity. PostgreSQL's support for advanced data types,
including arrays and JSONB, allows for efficient representation of structured data, giving the
flexibility to denormalize where performance benefits outweigh the purity of normalization.
Indexes and Performance: PostgreSQL excels in its indexing capabilities, including B-tree,
hash, GIN, and GiST indexes. These are used with advantage by indexing columns that are
frequently queried or used in join conditions. Laravel's migration system allows to easily define
indexes alongside the table structures.
Foreign Key Constraints: PostgreSQL's robust support for foreign key constraints within
Laravel migrations enforce referential integrity at the database level. This ensures relationships
between tables remain consistent, a critical aspect of database design that prevents orphaned
records and data anomalies.
Utilizing Laravel Relationships: Eloquent ORM makes it simple to define relationships (e.g.,
one-to-one, one-to-many, many-to-many) between models, which correspond to the
relationships between tables in PostgreSQL. Defining these relationships in Laravel models
enables writing more expressive and concise code when fetching related data.

6.1.3 Best Practices
Using Migrations for Evolution: Laravel's migrations are used to evolve the database schema
over time. This approach ensures changes are applied consistently across development, staging,
and production environments, reducing the risk of discrepancies and deployment issues.
Leveraging PostgreSQL Features: Full advantage is taken of PostgreSQL-specific features
where appropriate. This includes using JSONB columns for flexible data storage, exploiting

Page 23 of 32
D5.2 Technical Requirement & Development Guide Green Marine

the full-text search capabilities for efficient searching, and utilizing PostgreSQL's powerful
aggregation and window functions for complex data analysis.
Optimizing Queries with Eloquent: While Eloquent simplifies data manipulation and
retrieval, it's crucial to remain mindful of potential performance pitfalls, especially the "N+1"
query problem. Eloquent's eager loading feature (with()) can optimize related model data
fetching. Leveraging PostgreSQL's materialized views for complex aggregations allows further
optimization in data access.
Regularly Review and Optimize: Regularly reviews to the database schema and queries for
optimization opportunities. PostgreSQL provides extensive logging and analysis tools like
EXPLAIN to help identify and optimize slow queries. Laravel's database query log can also
be a valuable tool in understanding how your application interacts with the database.

6.2 DATA SECURITY MEASURES
This section highlights key data security measures when using PostgreSQL in application
development.

6.2.1 Authentication and Authorization
• Role-Based Access Control (RBAC): PostgreSQL utilizes a sophisticated role-based

access control system. Defining roles for users and groups with specific privileges,
ensures that individuals can only access data and perform operations pertinent to their
role.

• Strong Password Policies: Enforcing strong password policies using PostgreSQL's
password authentication mechanisms.

6.2.2 Encryption
• SSL/TLS for Data in Transit: Secure data in transit between the application and

PostgreSQL server using SSL/TLS encryption. Always enforce SSL connections to
prevent data interception and ensure confidentiality.

6.2.3 Network Security
• Firewall Configuration: Access to the PostgreSQL server is restricted from

unauthorized networks by configuring firewall rules. Only connections from trusted
application servers and administrative locations are allowed. No direct internet
connections are allowed.

• Secure Connection Settings: PostgreSQL's pg_hba.conf file defines access policies,
including which IP addresses can connect to which databases and which
authentication methods are allowed.

6.2.4 Auditing and Monitoring
• Logging and Audit Trails: Detailed logging in PostgreSQL is used to keep an audit

trail of database activities. Tools like pgAudit for more granular audit logging, allow
to track and analyze access and changes to sensitive data.

• Regular Security Assessments: Periodically perform security assessments and
vulnerability scans on the PostgreSQL installation. The database server and software
are kept up to date with the latest security patches and updates.

6.3 DATA BACKUP AND RECOVERY
This section outlines essential practices for data backup and recovery in the PostgreSQL
environment used in this project.

Page 24 of 32
D5.2 Technical Requirement & Development Guide Green Marine

6.3.1 Backup Techniques
Logical Backups (in use):

• pg_dump and pg_dumpall: We use pg_dump for backing up a single database and
pg_dumpall for all databases in a PostgreSQL cluster. These tools generate SQL
scripts that can recreate the database by replaying the commands.

• Advantages: Logical backups are portable and can be restored on any PostgreSQL
server, regardless of the architecture or version (with some version considerations).

• Use Case: Ideal for smaller databases or when migrating data across different
PostgreSQL versions.

Physical Backups:
• File System-Level Backup: Directly copy the database files from the file system.

This requires the database to be shut down or a consistent snapshot mechanism to be
in place (e.g., using LVM snapshots).

• pg_basebackup: A tool for taking a base backup of a PostgreSQL database cluster,
allowing for hot backups (backups taken while the database is running).

• Advantages: Faster backup and restore times compared to logical backups, especially
for large databases.

• Use Case: Suitable for large databases and when minimizing downtime is critical.

6.3.2 Point-in-Time Recovery (PITR)
PITR extends physical backups by allowing the database to be restored to a specific moment
in time. This is achieved by combining a base backup (ex: done the previous night) with the
write-ahead log (WAL) files that record all changes made to the database after the backup
(ex: during the day).

• Continuous Archiving: Configure continuous archiving of WAL files using the
archive_mode and archive_command settings in postgresql.conf.

• Restore Process: Use pg_restore or directly copy the base backup files, and replay
WAL files up to the desired point in time.

6.3.3 Best Practices for Backup and Recovery
• Regular Backups: Regular backups are scheduled, to reduce data loss risk. The

frequency will be based on the ammount of data modifications and number of users.
• Monitor Backups: Automated backup monitoring to verify that backups complete

successfully and alert on failures.
• Secure Backups: Encrypted backup files and secure transfer to off-site storage or

cloud services to protect against unauthorized access and data breaches.
• Test Recovery Procedures: Regularly test recovery procedures to ensure that

backups can be restored successfully and within the required time frames. This helps
identify issues in the backup process and reduces downtime during actual recovery
scenarios.

7 INTEGRATION AND APIS
This section is the subject of deliverable D5.1 Report on API specification.

Page 25 of 32
D5.2 Technical Requirement & Development Guide Green Marine

8 PERFORMANCE OPTIMIZATION

8.1 LOAD TESTING
Load testing is a critical component of performance optimization, designed to evaluate how a
system behaves under both normal and peak load conditions. This process involves
simulating a high number of users accessing the application simultaneously to identify
bottlenecks, determine the system's capacity, and ensure stability and reliability under various
load scenarios. This section outlines the importance, methodologies, tools, and best practices
for conducting effective load testing as part of the technical requirements and development
guide.
The objectives are:

• Identify Performance Bottlenecks: Discover areas in the application where
performance issues may arise under heavy load, allowing for targeted optimizations.

• Validate Scalability: Confirm that the application can handle expected user growth
and peak usage periods without degradation in performance.

• Ensure Reliability and Stability: Verify that the application remains stable and
responsive under high load, preventing downtime and ensuring a positive user
experience.

• Optimize Infrastructure Costs: Understand the system's capacity to optimize
resource allocation and infrastructure costs, avoiding over-provisioning while
ensuring performance targets are met.

Load Testing is done in several ways, following the order:
1. Baseline Testing: Establish a performance baseline by testing the application under

normal load conditions. This baseline serves as a reference point for comparing the
effects of optimizations and understanding performance under peak load.

2. Stress Testing: Incrementally increase the load until the application or infrastructure
components fail. This identifies the upper limits of the system's capacity and uncovers
how the system fails under extreme conditions.

3. Endurance Testing: Subject the application to a significant load over an extended
period. This helps identify issues like memory leaks, resource depletion, and
performance degradation over time.

4. Peak Load Testing: Simulate the maximum expected number of users accessing the
application simultaneously. This test assesses the system's behavior during peak usage
periods and ensures it can handle sudden spikes in traffic.

5. Scalability Testing: Evaluate the application's ability to scale up or out by adding
resources (e.g., CPU, RAM, servers) and measuring the impact on performance. This
helps determine the most effective scaling strategies.

Several open-source tools are available for conducting load testing, ranging from open-source
to commercial solutions. Popular options include:

• JMeter: An open-source tool designed for load testing web applications. It can
simulate multiple users with concurrent requests and supports various protocols.

• Gatling: An open-source load testing tool known for its high performance and
support for complex scenarios. It uses a DSL for test script creation.

• Locust: An open-source load testing tool written in Python, allowing for writing test
scenarios in Python code. It is lightweight and scalable.

The best practices on load testing, involve:

Page 26 of 32
D5.2 Technical Requirement & Development Guide Green Marine

• Realistic Test Scenarios: Design test scenarios that closely mimic real-world usage
patterns, including different types of user interactions and data.

• Continuous Testing: Integrate load testing into the continuous integration/continuous
deployment (CI/CD) pipeline to regularly assess performance as the application
evolves.

• Monitor and Analyze: Use monitoring tools to collect metrics during load tests.
Analyze these metrics to identify bottlenecks and understand the system's behavior
under load.

• Iterative Optimization: Conduct load testing iteratively throughout the development
cycle. Use the results to guide performance optimizations and retest to validate
improvements.

By systematically conducting load testing and analyzing the results, we can identify and
address performance bottlenecks, ensuring that the application meets performance goals,
remains stable under peak loads, and delivers a seamless user experience. Integrating load
testing into the development process supports informed decision-making regarding
infrastructure investments and optimization strategies, ultimately contributing to the success
and scalability of the application.

8.2 CODE OPTIMIZATION
Code optimization is the process of modifying code to improve its efficiency and performance
without altering its functionality. This is crucial for enhancing the speed, reducing resource
consumption, and improving the overall user experience of software applications. By
optimizing code, we can ensure that applications run smoothly, respond quickly to user inputs,
and operate effectively on limited resources. It's crucial to approach optimization thoughtfully,
based on actual performance data and considering the overall impact on code maintainability
and readability. It’s important to focus first on having a working solution and only after using
benchmarks and profiling to identify actual performance bottlenecks, to tackle possible
optimizations. Avoid premature optimization without evidence that a specific piece of code is
a performance issue.

8.3 SCALABILITY CONSIDERATIONS
Docker is a leading platform for developing, shipping, and running applications inside
containers, playing a pivotal role in addressing scalability challenges in modern software
architectures. Containers encapsulate applications with their dependencies, ensuring
consistency across different environments and facilitating easy scaling. This section discusses
key scalability considerations when using Docker, offering insights into how Docker can be
leveraged to build highly scalable and resilient applications.
The objectives are to:

• Enable Seamless Scaling: Utilize Docker to scale applications horizontally, adding or
removing instances based on demand, without affecting the overall system stability or
user experience.

• Maintain Performance Under Load: Ensure applications maintain high performance
and responsiveness as they scale, handling increased loads efficiently.

• Simplify Deployment and Management: Leverage Docker's ecosystem to automate
and simplify the deployment, scaling, and management of containerized applications.

To properly handle scalability, some considerations need to be taken:

• Stateless vs. Stateful Applications: Design applications to be stateless whenever
possible, as stateless applications are easier to scale with Docker. For stateful

Page 27 of 32
D5.2 Technical Requirement & Development Guide Green Marine

applications, consider strategies to externalize state management using databases or
persistent storage solutions that can handle scaling independently.

• Resource Allocation: Carefully manage container resources through Docker's CPU
and memory allocation features. Properly configuring these can prevent any single
container from monopolizing system resources, ensuring a balanced distribution of
resources among all containers.

• Load Balancing: Implement load balancing to distribute incoming traffic evenly across
multiple container instances. Docker Swarm mode and Kubernetes offer built-in load
balancing solutions that work seamlessly with containerized applications.

• Service Discovery: As applications scale, keeping track of which service is running
where becomes challenging. Utilize service discovery mechanisms available in
container orchestration platforms like Docker Swarm or Kubernetes to dynamically
manage connections between services.

• Orchestration Tools: Adopt container orchestration tools such as Docker Swarm or
Kubernetes for managing large-scale container deployments. These tools provide
essential features for scalability, including automatic scaling, self-healing, and rolling
updates.

• Monitoring and Logging: Implement comprehensive monitoring and logging
solutions to track the performance and health of applications as they scale. Tools like
Prometheus for monitoring and Elasticsearch for logging, integrated with Docker,
provide valuable insights for scaling decisions.

• Efficient Image Management: Optimize Docker images for size and build efficiency.
Smaller images reduce deployment times and resource consumption, which is crucial
for scaling operations. Utilize multi-stage builds and remove unnecessary dependencies
to minimize image size.

The following best practices considerably improve success when implementing scalability:

• Immutable Containers: Adopt an immutable infrastructure approach where containers
are never modified after they are deployed. Instead, new container instances are created
from updated images and replaced, simplifying scaling and deployment processes.

• Automate Everything: Use CI/CD pipelines and automation tools to streamline the
building, testing, and deployment of containerized applications. Automation ensures
consistency and reduces the risk of errors during scaling operations.

• Plan for Failover and Redundancy: Design the system with failover and redundancy
in mind to ensure high availability. This includes deploying services across multiple
nodes or data centers to prevent downtime during scaling actions or infrastructure
failures.

Scalability is a critical consideration in modern application development, and Docker offers a
robust set of features and practices to address these challenges effectively.

9 SECURITY MEASURES

9.1 AUTHENTICATION AND AUTHORIZATION
Laravel offers mechanisms for user authentication and "login" capabilities. Laravel aims to
provide developers with the necessary tools to implement authentication swiftly, securely, and
effortlessly.

Page 28 of 32
D5.2 Technical Requirement & Development Guide Green Marine

At the heart of Laravel's authentication system lie "guards" and "providers". Guards are
responsible for determining the method of user authentication for each request. For instance,
Laravel includes a session guard that utilizes session storage and cookies to manage state.
Providers are tasked with fetching user information from your persistent storage solutions. By
default, Laravel supports user retrieval via Eloquent and the database query builder, though it
allows for the creation of additional providers to suit your application's specific needs.
The authentication configuration can be found in the config/auth.php file. This file offers a
variety of well-explained options that allow for customization of Laravel's authentication
features.
Beyond its built-in authentication capabilities, Laravel simplifies the process of authorizing
user actions for specific resources. Although a user might be authenticated, they might not have
the permission to modify or remove certain Eloquent models or database records within your
application. Laravel's authorization tools offer a streamlined method for conducting these
authorization verifications.
Laravel includes two main mechanisms for action authorization: gates and policies. Analogous
to routes and controllers, gates provide a straightforward, closure-based method for
authorization, whereas policies organize authorization logic around a specific model or
resource.
Gates are ideally suited for actions not associated with a model or resource, such as accessing
an admin dashboard. On the other hand, policies are recommended for authorizing actions
concerning a specific model or resource.

9.2 ENCRYPTION STANDARDS
Laravel employs strong encryption standards to ensure data security and confidentiality. This
is the main application standard, used over or across the system modules, whenever secure
communication is required beyond the context of the server. The framework uses the OpenSSL
library to provide AES-256 and AES-128 encryption. These standards are widely recognized
for their robustness and are considered secure for protecting sensitive information. Laravel's
encryption facilities are built around these algorithms to safeguard data at rest and during
transmission.
Here's a brief overview of the encryption standards in Laravel:

• AES-256: Stands for Advanced Encryption Standard with a 256-bit key. It is one of
the most secure encryption methods used in modern encryption algorithms, protocols,
and technologies. Laravel uses AES-256 as its default encryption cipher.

• AES-128: Similar to AES-256 but uses a 128-bit key. It offers a slightly lower level
of security compared to AES-256 but is still considered highly secure and is faster in
terms of performance. Laravel supports AES-128, allowing developers to choose
between the level of security and performance that best suits their application's needs.

Laravel's encryption configuration is defined in the config/app.php file, where you can specify
the default cipher (AES-256-CBC or AES-128-CBC) and set an application key (APP_KEY).
This key serves as the encryption key and should be kept secret. Laravel uses this key to encrypt
and decrypt data securely. The APP_KEY can be generated using the artisan command php
artisan key:generate, ensuring it is sufficiently random and secure.

Laravel provides a simple, clean API for encrypting and decrypting data through its Crypt
facade. Encrypted values are signed with a message authentication code (MAC) to detect any
modifications to the encrypted string.

Page 29 of 32
D5.2 Technical Requirement & Development Guide Green Marine

The following considerations are essential for a proper secure implementation:
• The encryption key (APP_KEY) is crucial to the security of encrypted data. It should

be stored securely and never be exposed to unauthorized users.
• Laravel's encryption mechanism is designed to be seamless, but it is necessary to

understand when and how to apply encryption to protect sensitive data appropriately.
• Regularly reviewing and updating security practices, including encryption standards

and key management procedures, is essential for maintaining data security.

9.3 SECURITY AUDITS AND MONITORING
Ensuring the security of a server application is a continuous process that involves regular audits
and proactive monitoring. Security audits help identify vulnerabilities within the application,
while monitoring ensures that any security threats or anomalies are detected and addressed in
real time. Implementing a comprehensive strategy for security audits and monitoring is crucial
for maintaining the integrity, confidentiality, and availability of the application and its data.

Security audits involve a systematic examination of the application's codebase, dependencies,
configuration settings, and deployment environment to identify security weaknesses and non-
compliance with best practices. Key components of a security audit include:

• Code Review: Manual and automated review of the application's source code to detect
security flaws, such as SQL injection vulnerabilities, cross-site scripting (XSS)
vulnerabilities, and insecure direct object references.

• Dependency Analysis: Regularly checking third-party packages and libraries for
known vulnerabilities using tools like Composer's composer audit command, Laravel-
specific and Python specific packages designed for security auditing.

• Configuration and Environment Review: Verifying that configuration settings, both
within Laravel and in the server environment, are optimized for security. This includes
checking for correct permission settings, secure database connections, and proper
encryption key management.

Monitoring involves tracking the application's operations and analyzing logs to detect and
respond to security incidents. Effective monitoring can alert administrators to unauthorized
access attempts, potential vulnerabilities being exploited, or unusual application behavior that
could indicate a security issue. Key aspects of monitoring include:

• Log Analysis: Utilizing Laravel's logging capabilities to capture and analyze logs. This
can be enhanced with external tools like Logstash, Elasticsearch, and Kibana (the ELK
stack) for more sophisticated log analysis and visualization.

• Real-Time Alerting: Implementing real-time alerting mechanisms to notify
administrators of potential security incidents. This can be achieved through custom
Laravel notifications or integration with external monitoring services.

• Performance Metrics: Monitoring application performance metrics, as a sudden
change in performance can sometimes indicate a security issue or an ongoing attack.

The best practices include:

• Automate Security Processes: Where possible, automate security auditing and
monitoring processes to ensure they are performed consistently and efficiently.

• Stay Informed: Subscribe to security bulletins and update dependencies regularly.
• Educate and Train: Ensure that the development and operations teams are aware of

security best practices and the importance of security within the development lifecycle.

Page 30 of 32
D5.2 Technical Requirement & Development Guide Green Marine

Security audits and monitoring are essential components of na application's security posture.
Regularly auditing the application for vulnerabilities and continuously monitoring its
operations can help prevent security breaches and minimize the impact of any incidents that do
occur.

10 DOCUMENTATION GUIDELINES

10.1 CODE DOCUMENTATION
This subsection outlines best practices for documenting application's code in the project.

10.1.1 Commenting Code
• Inline Comments: Use inline comments sparingly to explain "why" behind complex

or non-obvious code logic. Avoid stating "what" the code does, unless it's not
immediately clear from the code itself.

• Clarity: Keep comments concise and relevant. Avoid stating the obvious.
• DocBlocks: Utilize DocBlock comments for all classes, methods, and functions.

These should describe the purpose of the element, parameters, return types, and any
exceptions thrown. Laravel follows the PHPDoc standard for these comments,
facilitating better understanding and integration with IDEs for auto-completion and
code analysis.

• Docstrings: Python's docstrings offer a built-in method of documenting Python
classes, methods, functions, and modules:

• Format: Use triple double quotes """ to start and end a docstring.
• Content: Include a concise description of the function's purpose, parameters,

return values, and any exceptions it raises.

10.1.2 Documenting Methods and Functions
• Purpose: Start with a brief description of what the method/function does.
• Parameters: List each parameter, its type, and a short description. Include whether

the parameter is optional or required.
• Return Types: Clearly specify the return type and describe what is being returned.
• Exceptions: Note any exceptions that can be thrown by the method/function.

10.1.3 Class Documentation
• Class Overview: Provide an overview of the class at the beginning of each class file,

including its role within the application.
• In python, document classes using docstrings immediately below the class definition.

Include an overview of the class and docstrings for each method.
• Properties: Document each property, especially if its usage isn't inherently clear.

Include types and any default values.
• Usage Examples: Where appropriate, include snippets or examples of how to use the

class or its methods, particularly for libraries, helpers, or complex components.

10.1.4 Versioning and Deprecation Notices
• Versioning: Document the version of the application or API that introduced each

significant piece of functionality. This practice is particularly important for APIs and
libraries.

• Deprecation Notices: Clearly mark deprecated methods or classes, providing
alternatives when possible. Include the version in which the deprecation occurred and
the expected removal version, if known.

Page 31 of 32
D5.2 Technical Requirement & Development Guide Green Marine

10.1.5 Readability and Consistency
• Language: Use clear, concise, and simple language. Aim for accessibility, assuming

readers have varying levels of expertise.
• Format and Style: Adhere to a consistent format and style for your documentation.

Consider adopting widely used standards within the Laravel community or your
development team.

• Update Regularly: Documentation should evolve with your codebase. Regularly
review and update documentation to reflect changes, removals, or additions to the
codebase.

10.1.6 External Documentation
• ReadMe and Wikis: Use Markdown files (e.g., README.md) for project-level

documentation, including installation instructions, usage examples, and contribution
guidelines.

10.1.7 Tools and Integrations
• Automated Documentation Generators: Utilize tools like PHPDocumentor, Sami

or Sphinx to generate API documentation automatically from your DocBlocks and
docstrings. These tools can save time and ensure consistency across your
documentation.

• Code Reviews: Incorporate documentation quality into your code review process.
Peer reviews should include checks for adequate and accurate documentation.

Well-documented code is as important as the code itself. It ensures that developers, both
current and future, can understand, use, and contribute to the project effectively. By
following these guidelines for code documentation within your Laravel application, you
create a more maintainable, understandable, and user-friendly codebase.

10.2 USER MANUALS
This subsection outlines best practices for creating effective user manuals.

10.2.1 Understanding the Audience
• User Profiling: Tailor the manual to the audience's knowledge level and needs.

Differentiate between novice, intermediate, and advanced users, if necessary, by
providing layered instructions or separate sections.

• Language and Tone: Use clear, straightforward language that is accessible to your
target audience. Avoid jargon and technical terms unless you are targeting a
technically savvy audience, and even then, provide explanations.

10.2.2 Structure and Content
• Introduction: Begin with an overview of the software, including its purpose, key

features, and benefits. This section sets the context for the rest of the manual.
• Getting Started: Provide a quick start guide for users to perform basic operations or

setup. This section is crucial for ensuring a positive first experience.
• Features and How-Tos: Detail each feature of the software, including step-by-step

instructions on how to use them. Include screenshots, diagrams to illustrate these steps
when possible. Clearly state the limits and assumptions on simulations, so that users
are fully aware of the context that the simulation expects (ex: zero friction,
temperature ranges, etc)

Page 32 of 32
D5.2 Technical Requirement & Development Guide Green Marine

• Troubleshooting: Offer a troubleshooting section addressing common issues and
their solutions. This empowers users to solve problems without reaching out for
support.

• FAQs: Include a Frequently Asked Questions (FAQ) section to cover common
queries. This section can evolve based on the feedback and inquiries from users.

10.2.3 Visual Aids
• Screenshots: Visual aids can significantly enhance understanding. Use high-quality

screenshots to complement text instructions.
• Diagrams and Flowcharts: Use diagrams to explain workflows or architecture, and

flowcharts for decision-making processes within the software.

10.3 RELEASE NOTES
This subsection outlines best practices for crafting informative and user-friendly release notes.

10.3.1 Importance of Release Notes
• Transparency: Release notes communicate the changes in each version, fostering trust

and transparency between the developers and the user community.
• Upgrade Decisions: They help users and administrators decide whether to upgrade by

detailing the benefits and any potential impacts of the new release.

10.3.2 Key Components
• Version Number and Release Date: Clearly state the version number and release date

at the beginning of the release notes to easily identify the software update.
• New Features: List new features and enhancements. Provide a brief description of each

feature and its potential benefits to the user.
• Improvements: Mention improvements to existing features, focusing on how they

enhance the user experience or performance of the software.
• Bug Fixes: Summarize key bug fixes, including the issue they resolve. Avoid overly

technical descriptions unless the audience demands it.
• Known Issues: If applicable, list any known issues and their potential impact on users.

Include workarounds or links to more information if available.
• Breaking Changes: Clearly highlight any breaking changes or compatibility issues.

Provide guidance on how to address these changes, such as updating configurations or
modifying code.

• Acknowledgments: Optionally, acknowledge contributors or thank the community for
their feedback and support, reinforcing the collaborative nature of the project.

Release notes should be distributed in a text/Markdown file, along with the code.

11 CONCLUSIONS
This document has provided a comprehensive guide covering the essential aspects of technical
requirements, development practices, and documentation standards to be used in the software
side of the Green Marine project. From outlining the foundational server and hardware
requirements to delving into the intricacies of database design, performance optimization, and
security, the goal is to equip developers and project managers with the knowledge needed to
navigate the complex landscape of modern software development, within the scope of this
project, providing a common frame of reference.
These guidelines should be seen as a starting point. As the project evolves, some procedures
may also evolve, to better adapt to the working needs.

